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Optically isotropic metamaterials �MMs� are required for the implementation of subwavelength imaging
systems. At first glance one would expect that their design should be based on unit cells exhibiting a cubic
symmetry being the highest crystal symmetry. It is anticipated that this is a sufficient condition since it is
usually assumed that light does not resolve the spatial details of MM but experiences the properties of an
effective medium, which is then optically isotropic. In this work we challenge this assumption by analyzing the
isofrequency surfaces of the dispersion relation of the split cube in carcass negative index MM. We show that
this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The
primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy.
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I. INTRODUCTION

Driven by the desire and the opportunity to have optical
materials with tailored properties at hand, the field of
metamaterials �MMs� attracts a steady increasing share of
research interest. To loosely define the field, one may under-
stand MMs as artificial structures made of subwavelength
unit cells, called meta-atoms. They predominantly affect the
light propagation by a careful choice of their geometry and
their arrangement; and not by the intrinsic properties of the
materials they are made of. MMs allow to tailor the flow of
light well beyond what would be possible with naturally oc-
curring materials by mimicking unprecedented optical prop-
erties. A large variety of new optical phenomena were pre-
dicted and experimentally proven on the base of MMs,
where negative refraction attracted potentially the largest
amount of interest.1–6 Metamaterials providing a negative ef-
fective refractive index are the essential ingredient to fabri-
cate a perfect lens with an optical resolution limit well below
Abbe’s prediction.7 However, and this is the major require-
ment currently not met by most of present MMs, this effec-
tive refractive index can only be meaningfully introduced if
the dispersion relation is isotropic, i.e., for lossless media the
isofrequency surface of the dispersion relation in three-
dimensional �3D� k space must be spherical. Moreover, this
isotropy has to hold also for evanescent waves since they
carry the subwavelength information for the desired super-
resolution. To overcome this obstacle various approaches for
obtaining isotropic MMs have been put forward.8–14

A systematic approach to design an isotropic magnetically
active MM was proposed by Baena et al.15 The first step is to
choose a highly symmetric MM. Such MM is constructed
based on a cubic unit cell arranged at a cubic lattice. It is
evident that MMs with this high-symmetry behave isotropi-
cally in the quasistatic limit. Frequently the optical properties
of such MMs have only been investigated for normal inci-
dence �zero-transverse wave vector� and then extrapolated
toward finite transverse wave vectors, assuming isotropic

medium response due to the symmetry of the structure.
However, and this is crucial, even if the structure is oper-

ated in the subwavelength domain, the required optical isot-
ropy is not straightforward, since the typical resonance
wavelengths, evoking magnetic effects, are comparable to
the structure size. Here a structure is meant to be subwave-
length if the unit cell is smaller than � /2 with � being the
wavelength in the outer domains. If this condition is met,
only the zeroth diffraction order is propagating in transmis-
sion as well as in reflection for real-valued angles of inci-
dence. There are only a few attempts where the MMs are
probed by obliquely incident fields and for different polar-
izations, mostly restricted to transmission and reflection
measurements.16–20 Since even for an isotropic medium the
reflection and transmission coefficients evidently depend on
the angle of incidence, it is hardly possible to draw conclu-
sion with respect to the isotropic behavior of the respective
MM. To ultimately verify whether a highly symmetric
metamaterial behaves optically isotropic, it is necessary to
calculate the dispersion relation �=��kx ,ky ,kz� where its
isofrequency surface kz=kz�kx ,ky ,�=const.� governs the dif-
fraction and refraction properties of the MM.21 Here, �, kx,y,
and kz are the frequency, the transverse and the longitudinal
wave-vector components, respectively, where the latter is
frequently termed propagation constant. The aim of this
work consists just in evaluating this isofrequency surface.

For computing isofrequency surfaces of a three-
dimensional MM we take the complex permittivity of the
material into account. This is crucial because most the band-
structure solvers assume lossless media which is certainly
incorrect for metamaterials. We use instead a plane-wave-
expansion technique that solves Maxwell’s equations in the
frequency domain for the periodic structure. The technique
solves the respective eigenvalue problem for the generally
complex propagation constant of the Bloch modes.22 Com-
puting the propagation constant as a function of the trans-
verse wave vector for a fixed frequency provides the isofre-
quency surfaces. By using this method we specifically show
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for the split cube in carcass �SCiC�-MM with cubic symme-
try that its optical response is isotropic only at low frequen-
cies. By contrast this isotropy disappears in the spectral do-
main where the propagation constant and hence the effective
refractive index is negative.

After having introduced the system under consideration in
Sec. II, we show in Sec. III that the proposed MM fulfills all
requirements usually imposed for its homogenization. In Sec.
IV we discuss the isofrequency surface for the negative re-
fraction regime and introduce a simple measure to quantify
the optical isotropy across the entire subwavelength fre-
quency domain.

II. SPLIT CUBE IN CARCASS DESIGN

For our investigations we use the split cube in carcass
structure, which is a simplified version of the split cube in
cage structure23 containing less number of fine details. Using
the nested structures approach the SCiC is designed such that
one element of the unit cell that exhibits magnetic properties
is inserted into another element which shows specific di-
electric response.24 The SCiC unit cell consists of two
silver parts embedded in silica ��=2.25�. Silver is regarded
as Drude metal with a plasma frequency of �p=1.37
�1016 rad /s and collision frequency �c=8.5�10131 /s.25

These parameters were adjusted to emulate the real experi-
mental situation in simulations.

The outer part, the Carcass, is a three-dimensional wire
medium26,27 and provides a negative permittivity. The inner
part, the split cube, is a hollow cube with slits in the middle
of the facets. It is the logical 3D extension of the symmetric
split ring resonator28–30 concept and provides a magnetic
resonance �“negative permeability” ��. The details regarding
the structure’s sizes are indicated in Fig. 1.

The SCiC was chosen because it has the highest possible
symmetry for a periodically arranged MM. In particular, it is
mirror symmetric with respect to three orthogonal axes. This
excludes any effects resulting from first-order spatial disper-
sionlike chirality.15,20,31 Due to the cubic symmetry the three
main propagation directions are equivalent. Hence, the opti-
cal response of the SCiC is supposed to be described by

scalar effective material parameters in the quasistatic limit,
i.e., the optical response should be isotropic. From these
symmetry considerations one usually draws the conclusion
that the SCiC might be an ideal candidate for an isotropic
negative index metamaterial.

III. HOMOGENEITY

To avoid any misinterpretations we will argue at first what
we will understand as homogeneity. A periodic medium is
said to be homogenizable if, at first, it consists of subwave-
length unit cells. This first condition simply requires the pe-
riod to be smaller than half the wavelength to suppress
propagation of higher diffraction orders. At second, light
propagation inside the structure is governed by the properties
of a single Bloch mode only. And at third, light impinging
onto the structure predominantly couples to this particular
mode.

Under these assumptions the considered medium is indis-
tinguishable to a homogeneous medium with an arbitrary
complex dispersion relation when its properties are probed
from an outer medium. Its optical response may be described
by nonlocal material parameters which are strongly spatially
dispersive in general. The isofrequency surfaces of the dis-
persion relation, i.e., the normal-mode surfaces can have an
almost arbitrary complex shape. Only if the spatial disper-
sion is weak the material parameters can become local and
the isofrequency surfaces are simply elliptical. Then the so
called quasistatic limit is reached for small rations of period
over wavelength, i.e., a /�. The latter assumption is obvi-
ously more demanding than homogeneity in general. Hence
optical isotropy, i.e., spherical isofrequency surface of the
dispersion relation, is attainable only for electrically small
objects with cubic symmetry. Therefore a homogeneous me-
dium is not necessarily describable by local material param-
eters but vice versa.

So to describe a MM as an effectively homogeneous me-
dium, it is necessary to assure at first that light propagation
within the MM is exclusively governed by a single Bloch
mode. To be sure that this requirement is met, we also have
to prove that the incident light field couples only to this
particular mode. This is done by comparing the effective
plane-wave-propagation constant, as retrieved from reflec-
tion and transmission data of a finite structure, with that ob-
tained from the dispersion relation of the lowest-order Bloch
mode.32

We will determine the effective propagation constant in
the SCiC by using the S-parameter retrieval method.33,34

The complex reflection and transmission coefficients are nu-
merically calculated by the Fourier modal method35 where
31�31 Fourier orders were retained to achieve convergent
results. By inversion of these scattering data the effective
propagation constant k=kz and the effective impedance Z can
be determined. To certify that such an assignment of effec-
tive parameters to structures composed of only a small
number of functional layers is meaningful and that the ho-
mogenization is valid, it is necessary to investigate the con-
vergence of the parameters toward their bulk values,36 there-
fore we determine the propagation constant of the Bloch
eigenmodes of the infinite structure as well.

FIG. 1. Schematic of the split cube in Carcass unit cell. The
Carcass �a� serves to provide a plasmalike optical response resulting
in a negative effective permittivity. The split-cube cut �cut is shown
for clarity� �b� provides an artificial magnetic response.
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This is done by calculating the T matrix for a single pe-
riod and solving the eigenvalue problem

T̂�E

H
� = exp�ik���E

H
�

to obtain the propagation constant k=kBloch of the Bloch
modes, where � is the period in the main propagation direc-
tion.

The results for the real and imaginary part of both propa-
gation constants �finite homogeneous and infinite periodi-
cally structured media� and the formally introduced effective
refractive indices n=ck /� are shown in Fig. 2. For the peri-
odic bulk material we get in general the propagation con-
stants for an infinite number of Bloch modes �which remains
nevertheless finite because of the numerical truncation of the
number of plane waves retained in the plane-wave expan-
sion� but only the zeroth-order mode, i.e., the one with the
smallest imaginary part is shown. Clearly the values obtained
from the finite effectively homogeneous structure are con-
verging astonishingly fast toward the values for the periodic
bulk medium. Thus, two important conclusions can be
drawn, first the homogenization of the periodic MM is fea-
sible and second the optical response of a SCiC-MM consist-
ing of only a few layers equals that of a bulk medium.

The design purpose of the SCiC is a negative effective
propagation constant, and thus an negative effective index of
refraction which is clearly achieved for frequencies around
170 THz �figure of merit −R�n� /I�n�=0.35, ratio of period
to vacuum wavelength a /��1 /7�. Note that the effective
permeability is dispersive but positive in the investigated fre-
quency range. Hence, the SCiC is a single negative MM
resulting in the fairly small figure of merit. For frequencies
less than 150 THz the SCiC is rather a strong absorber due to
the large metal fraction.

Since for the scattering problem at the finite system the
coupling to different Bloch modes was rigorously consid-
ered, we can conclude that the propagation of light through

the structure as well as the coupling process is almost en-
tirely dictated by the fundamental Bloch mode only, again
underlining the validity of the homogenization procedure.
This is clear as the propagation constant values for the finite
and the infinite structures coincide. Although not shown here
for the sake of brevity the propagation constants for oblique
incidence are also rapidly converging toward the bulk values.
Also the effective impedance is converging for normal inci-
dence as well as for oblique incidence.

Hence, we can fully rely on describing light propagation
in terms of the dispersion relation assuming that light will
couple to this fundamental mode only. Note that from the
results above we can also conclude that the SCiC fulfills all
requirements for the homogenization of the MM, namely, the
structure is subwavelength �compared to the wavelength of
the environment� and light propagation inside the structure is
determined by a single Bloch mode to which an external
light field predominantly couples.

IV. DISPERSION RELATION AND OPTICAL ISOTROPY

The main property we are interested in is the optical isot-
ropy of the SCiC, in particular, in the spectral region around
170 THz where the propagation constant is negative. To
judge this we will proceed in calculating the isofrequency
surface.

Due to the symmetry of the structure the complete isofre-
quency surface can be constructed by only calculating the
dispersion relation in the irreducible Brillouin zone. The real
and imaginary parts of the propagation constant for a fixed
frequency of 170 THz are shown in Figs. 3�a� and 3�b�. For
comparison we show in Figs. 3�c� and 3�d� the analytically
calculated isofrequency surface of an isotropic medium,
which has the same refractive index as SCiC at normal inci-
dence.

At first we notice that both the real and the imaginary
parts of the propagation constant of the MM are not rotation-

FIG. 2. �Color online� �a� Real and �b� imagi-
nary parts of the propagation constants and effec-
tive refractive indices �c� and �d� for the effec-
tively homogeneous finite and the infinite
periodic structures at normal incidence. The re-
sults for the finite structure �solid lines� are given
for an increasing number of layers �one layer—
blue �upper�, two layers—green �middle�, and
five layers—red �lower��. The dotted black line
corresponds to the values obtained from the
Bloch mode with the smallest losses.
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ally symmetric and monotonically changing with increasing
absolute value of the tangential component kt as for the iso-
tropic medium. In particular, the dependency on the trans-
verse wave vector is tremendously different when compared
to the isotropic medium. While the real part is monotonically
increasing with kt in the �X direction it is nonmonotonously
decreasing in the �M direction. Also the imaginary part is
strongly increasing in the �M direction and only slowly
varying in the �X direction. Hence, any formally introduced
effective refractive index would explicitly depend on the
transverse wave vector k�= �kx ,ky�. Therefore, the introduc-
tion of a global effective refractive index is pointless since
no additional information is obtained. Nevertheless for
paraxial wave propagation the introduction of a local effec-
tive refractive index is feasible. Near the � point the isofre-
quency surface is approximately spherical where the validity
of this approximation strongly depends on the frequency and
the wavelength to cell-size ratio as discussed later in detail.

It should be mentioned that the choice of real valued kx
and ky is arbitrary to a certain extent. In lossy medialike
metamaterials, in general, the complex nature of the disper-
sion relation cannot be neglected. Hence the dispersion rela-
tion could also be calculated for complex valued kt. On the
other hand it is pointless to provide these values as they are
not accessible in any experiment. The tangential wave-vector
components are continuous at boundaries and only real-
valued plane-wave solutions can exist in free space, therefore
this choice reflects experimental constraints.

To more quantitatively evaluate the optical isotropy of the
MM, we monitor in the following the relative deviation be-
tween the numerically obtained propagation constant and the
ideal spherical isofrequency surface. To quantify this devia-
tion we assume that the effective refractive index at normal
incidence is valid also for any other propagation direction.
From symmetry considerations and the exemplary results in
Fig. 3 we conclude that it is sufficient to investigate the
dependency in the high-symmetry �X and �M directions
assuming that for a fixed value of �kt� these points are ex-
tremes of the isofrequency surface. In Fig. 4 the real part of

the propagation constant is shown as a function of the fre-
quency and of the tangential wave-vector component kt /k0,
where k0 is the free-space propagation constant. The edge of
the first Brillouin zone for the largest possible frequency
�200 THz� would be at kt /k0�3 because of

kt

k0
=

�

ak0
=

��200 Thz�
2a

=
2 � 106

200 � 1012c � 3.

The most important frequency region here is the black do-
main of negative refraction where the split cube provides the
artificial magnetic response. Also the isoerror lines for the
relative error

	 = 	 �kz� − �kz�ideal

�kz�ideal
	

with �kz�ideal= �
kz
2�kt=0�−kt

2� are given for several values as
green lines. The quantity 	 is a measure for the relative
deviation of the modulus of the propagation constant for ob-
lique incidence from that for normal incidence. We have
taken the moduli because all quantities are complex-valued.
The isoerror lines in the nonresonant regime ���150 THz�
scale approximately with 1 /�
�. This results from the fact
that the homogeneous medium approximation improves with
a decreasing unit cell size to wavelength ratio a /�. For fre-
quencies larger than 160 THz the structure becomes resonant
and an abrupt change in the isoerror lines is clearly observ-
able.

Obviously in the resonant regime the MM can be only
considered isotropic if the ratio a /� is much less than in the
nonresonant regime. In general the situation is identical for
both planes of incidence ��X and �M directions�. However,
for larger frequencies the deviation of the calculated isofre-
quency lines to the ideal ones is slightly smaller in �M than
in �X direction but not significantly.

Note that the introduction of the quantity 	 is only one
option to quantify the deviation of the pertinent isofrequency
surface from the ideal one. Other measures are also possible,
where, for example, the deviation of the length of the actual
wave vector compared to the length of the wave vector in an
isotropic medium yields qualitatively the same results.

FIG. 3. �Color online� �a� Real and �b� imaginary parts of the
propagation constant of the lowest-order Bloch mode in the first
Brillouin zone. �c� Real and �d� imaginary parts of the propagation
constant of an isotropic medium with the same refractive index as
the SCiC at normal incidence.

FIG. 4. �Color online� �a� Real part of the propagation constant
as a function of the frequency and the angle of incidence where the
plane of incidence is parallel to the coordinate axes. �b� The same as
�a� with plane of incidence rotated by � /4, i.e., the �M direction.
The green isoerror lines correspond to the relative deviations 	
� �0.02,0.1,0.5,2 ,5�% �from left to right�.
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Before we proceed to discuss the results, some remarks
concerning the investigated parameter space are in order.
Here, the dispersion relation is not calculated up to the edge
of the Brillouin zone but for fixed tangential wave vectors
which translate for propagating waves into certain angles of
incidence. This is more useful since for very low frequencies
it is not possible to provide incident plane waves with tan-
gential wave-vector components kt that are in the order of
� /a where a is the lattice constant. Furthermore, plane
waves with wave vectors in the dimension of the lattice vec-
tor will always sense the details of the periodicity. In this
case the issue of an optically isotropic structure is pointless.
Of course, also for small frequencies the isosurface are not
rotationally invariant but these domains are, in general, not
accessible to the experiment and are negligible. Assuming
the outer medium to have a permittivity � then the line given
by kt /k0=
� corresponds to grazing incidence and to the
angular domain accessible from free space.

Up to here we have only discussed the properties of the
fundamental Bloch mode with the smallest imaginary part
since this mode essentially dictates light propagation. While
considering the coupling of an external field to this Bloch
mode we had to suppose that only this mode is excited thus
restricting ourselves to a certain polarization state of the in-
cident light. Nevertheless, in the general case of arbitrarily
polarized incident light one has to discuss both eigenstates of
the polarization separately, as both may exhibit different
propagation constants. Assuming an isotropic homogeneous
medium the eigensolutions are always degenerated, i.e., they
have the same propagation constant and it is possible to de-
fine the eigenmodes as orthogonally and linearly polarized
plane waves. This is also the case for normally incident light
on a C4 symmetric structure as the isotropically designed
SCiC metamaterial. Here the light encounters the same
physical structure at normal incidence for any polarization
hence the eigensolutions are degenerated. For oblique inci-
dence the situation changes dramatically because both linear-
polarized eigenstates may encounter different structures.
Both eigensolutions may have different eigenvalues for the
propagation constant. One may compare the situation with a
uniaxial crystal, where the optical axis is aligned with the z
axis. For normally incident light the structure can be consid-
ered as being isotropic whereas at oblique incidence the ei-
genvalues for the two eigenpolarizations are different. Note
that the eigenpolarizations are always orthogonally, linearly
polarized for planes of incidence being identical with mirror
planes of the metamaterial.

Considering the SCiC as an effectively isotropic homoge-
neous medium, we expect that both the two fundamental
Bloch modes are degenerated and the effective refractive in-
dex is isotropic. So as soon as the eigenvalues for both Bloch
modes deviate from each other, the medium cannot be de-
scribed as being effectively isotropic. This deviation can also
serve as a measure for a meaningful MM homogenization.

In Fig. 5�a� we show the real and the imaginary parts of
the propagation constant for the two Bloch modes with the
smallest losses at a certain angle of incidence and in Fig. 5�b�
their difference as function of the frequency. Clearly for low
frequencies the propagation constants for both modes are
identical. As soon as the frequency increases the propagation

constants start to deviate from each other hence the SCiC
cannot be considered as optically isotropic anymore. The de-
viation is of course the stronger the larger the angle of inci-
dence is. At normal incidence they are identical as explained
in detail before. The conclusions to be drawn from these
figures are of course in line with those from the angular
dependency of the first Bloch mode only. The structure can
be considered as being isotropic only for small frequencies
and a limited range of angles of incidence where this angular
range is the larger the smaller the frequency is.

Finally, some further remarks are necessary in order to
elucidate the significance of the obtained results for other
spectral domains. Although we have investigated a specific
high-symmetry metamaterial here designed to operate in the
optical domain, we firmly believe that the conclusions to be
drawn will not change significantly by modifying the opera-
tional wavelength. First of all, the structure sizes when com-
pared to the vacuum wavelength are already quite small. At
the frequency of interest the wavelength to cell-size ratio is
approximately 7. Even in the gigahertz range this ratio does
not exceed 10 considerably.37 From Fig. 4 it can be deduced
that even in the nonresonant regime for � /a�15 the devia-
tion between the expected response and the achieved one
exceeds 2% already at kt /k0=1. The structure cannot be
made significantly electrically smaller if resonant metallic
particles are used to achieve the artificial magnetism. But
since the unit-cell design itself is already of cubic symmetry
the deviations of the expected isotropic optical response to
the actually obtained one is hence only due to the insuffi-
ciently large wavelength to cell-size ratio. To overcome these
obstacles it is maybe necessary to go completely different
ways.38

V. CONCLUSION

In this contribution we have investigated the optical re-
sponse of a highly symmetric SCiC MM in the negative
refraction regime. The SCiC exhibits cubic symmetry, i.e.,
the highest possible symmetry for periodic metamaterials
and is therefore considered a very promising candidate for an
isotropic negative refractive-index material. By investigating

FIG. 5. �Color online� �a� Real part �solid lines� and imaginary
part �dotted lines� of the propagation constant k��m−1� of the two
lowest damped Bloch modes at kt=k0 that are degenerated at nor-
mal incidence. �b� The difference between the real parts �blue,
lower line� and the imaginary parts �green, upper line� of these two
modes as function of the frequency. In the quasistatic limit, i.e., �
→� the difference is of course vanishing and both modes are
degenerated.
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at first a finite number of functional layers and the conver-
gence of the corresponding effective parameters to the values
obtained from the dispersion relation of the infinite structure
we can conclude that the SCiC fulfills all requirements of a
homogenizable metamaterial. Already a single functional
layer can be described by its bulk properties as only a single
Bloch mode determines light propagation inside the struc-
ture. Nevertheless our investigation of the isofrequency sur-
face of the dispersion relation clearly shows that even this
metamaterial with the highest symmetry is far away from
having an optically isotropic response in the region of nega-
tive refraction. This nonisotropic response is rather due to the
large electrical size of the resonant unit cells than due to an
insufficient design and will unlikely to be solved by shifting
the spectral domain of operation to the microwave regime.
Hence, the key result of this contribution is that one must not

conclude from high symmetry on an optically isotropic re-
sponse. Hence, optical isotropy of a MM can be only de-
duced from a careful inspection of the dispersion relation by
taking into account the material dispersion of metal too. This
is an important message to the designers of isotropic optical
metamaterials.
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